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We present a general numerical scheme for the practical implementation of statistical moment closures
suitable for modeling complex, large-scale, nonlinear systems. Building on recently developed equation-free
methods, this approach numerically integrates the closure dynamics, the equations of which may not even be
available in closed form. Although closure dynamics introduce statistical assumptions of unknown validity,
they can have significant computational advantages as they typically have fewer degrees of freedom and may
be much less stiff than the original detailed model. The numerical closure approach can in principle be applied
to a wide class of nonlinear problems, including strongly coupled systems (either deterministic or stochastic)
for which there may be no scale separation. We demonstrate the equation-free approach for implementing

entropy-based Eyink-Levermore closures on a nonlinear stochastic partial differential equation.
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I. INTRODUCTION

Accurate, fast simulations of complex, large-scale, nonlin-
ear systems remain a challenge for computational science
and engineering, despite extraordinary advances in comput-
ing power. Examples range from molecular dynamics simu-
lations of proteins [1,2] and glasses [3], to stochastic simu-
lations of cellular biochemistry [4,5], and to global-scale,
geophysical fluid dynamics [6]. Often for the systems under
consideration there is no obvious scale separation, and their
many degrees of freedom are strongly coupled. The complex
and multiscale nature of these processes therefore makes
them extremely difficult to model numerically. To make mat-
ters worse, one is often interested not in a single, time-
dependent solution of the equations governing these pro-
cesses, but rather in ensembles of solutions consisting of
multiple realizations (e.g., sampling noise, initial conditions,
and/or uncertain parameters). Often real-time answers are
needed (e.g., for control, tracking, filtering). These demands
can easily exceed the computational resources available not
only now but also for the foreseeable future.

In principle, all statistical information for the problem un-
der investigation is contained in solutions to the Liouville (if
deterministic)/Kolmogorov (if stochastic) equations. These
are partial differential equations in a state space of high (pos-
sibly infinite) dimension. A straightforward discretization of
the Liouville/Kolmogorov equations is therefore impractical.
An ensemble approach to solving these equations can be
taken,; however, quite often, the practical application of the
ensemble approach is also problematic. Generating a suffi-
cient number of independent samples for statistical conver-
gence can be a challenge. For some problems, computing
even one realization may be prohibitive.

The traditional approach to making these problems com-
putationally tractable is to replace the Liouville/Kolmogorov
equation by a (small) set of equations [partial differential
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equation (PDEs) or ordinary differential equation (ODEs)]
for a few, low-order statistical moments of its solution. When
taking this approach for nonlinear systems, one must make
an approximation, a closure, for the dependence of higher-
order moments of the solution on lower-order moments.
Typically the form of the closure equation is based on expert
knowledge, empirical data, and/or physical insight. For ex-
ample, in the superposition approximation and its extensions
[7] for dense liquids and plasmas, both quantum or classical,
one approximates third-order moments as functions of
second-order moments. Moment closure methods of this type
have been applied to a number of areas including fluid tur-
bulence (see [8], and references therein, and also the work of
Chorin et al.). Of course, as with any approximation strategy,
the quality of the resulting reduced description depends on
the approximations made—poor closures lead to poor an-
swers or predictions. In addition to replacing the ensemble
with a small set of equations for low-order moments, these
equations are typically easier to solve. They are deterministic
and generally far less stiff than the original equations.

A less exploited variant of this approximation scheme is
the probability density-function (PDF) -based moment-
closure approach [21]. For PDF moment closures one makes
an ansatz for the system statistics guided by available infor-
mation (e.g., symmetries). One then uses this ansarz in con-
junction with the original dynamical equations to derive
equations for the evolution of the relevant moments. Such
PDF-based closures have been developed for reacting scalars
advected by turbulence [9,10], phase-ordering dynamics
[11], and a variety of other systems. This approach to mo-
ment closure is a close analog of the Rayleigh-Ritz method
frequently wused in solving the quantum-mechanical
Schrodinger equation, by exploiting an ansatz for the wave
function. For a formal development of this point of view, see
[12,13].

©2008 The American Physical Society
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One of the obstacles to applying moment closures is that
often the closure equations are too complicated to write
down explicitly, even with the availability of computer alge-
bra or symbolic computation systems. This is especially true
for large-scale, complex systems, e.g., global climate mod-
els. Because of their great complexity, even if one could in
principle derive the closure equations analytically, this pro-
cedure would be extremely difficult and time intensive.
Moreover, each time a model is updated, as climate and
ocean models regularly are, the closure equations would
have to be rederived. In other cases it may simply be impos-
sible to determine the closure equations analytically. This is
especially likely when PDF’s are not Gaussian, which is the
case for most useful closures. Monte Carlo or other numeri-
cal methods may be needed in order to evaluate integrals for
the moments [14]. In addition, there may be situations where
neither analytic nor numerical or MC integration will yield
the closure equations due to the black-box nature of the
available numerical simulator such as a compiled numerical
code with an inaccessible source. Clearly, a need exists for a
robust approach to the general closure protocol which cir-
cumvents analytical difficulties.

We address that need here by combining PDF closures
with equation-free modeling [15,16]. The basic premise of
the equation-free method is to use an ensemble of short
bursts of simulation of the original dynamical system to es-
timate, on demand, the time evolution of the closure equa-
tions that we may not explicitly have. The equation-free ap-
proach may extend the applicability of statistical closures
beyond the rare cases where they can be expressed in closed
form. This hybrid strategy may be faster than the brute-force
solution of a large ensemble of realizations of the dynamical
equations since we generally expect the closure version to be
smoother than the original problem.

This paper is organized as follows. In Sec. II we describe
the general features of PDF-based moment closures. In Sec.
IIT we explain how to implement the equation-free approach
with these closures. We then, in Sec. IV, apply these ideas for
a specific dynamical system, the stochastic Ginzburg-Landau
(GL) equations using a particular PDF-based closure
scheme, the entropy method of Eyink and Levermore [17].
We conclude with a discussion of closure quality, computa-
tional issues, and the application of our approach to large-
scale systems. Although in this paper we apply our method-
ology to a single variable stochastic PDE in one space
dimension, we believe that in principle one may usefully
generalize and implement this set of tools to analyze more
complex systems.

II. PDF-BASED MOMENT CLOSURES

We consider the very general class of dynamical systems,
including maps, formally represented by

X =U(X(1),N(1),1), (1)

or
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X = Uz(Xz’ Nt) > ()

where N(7) is a stochastic process with prescribed statistics.
The stochastic component arises from unknown parameters,
random forcing, neglected degrees of freedom, and/or ran-
dom initial conditions. This class includes both deterministic
and stochastic systems with discrete and/or continuous
states. Queuing systems, molecular dynamics, and stochastic
PDEs are just some of the many examples that fall into this
category.

For concreteness in this paper we restrict ourselves to a
special case of Eq. (2), namely, situations where N(7) is a
Markov process (Brownian motion, Poisson process, etc.)
and—more specifically still—Itd stochastic differential equa-
tions of the form

dX = U(X,0)dt +\28(X,))dW (7). (3)

The deterministic component of the state X is governed by
the continuously differentiable vector field U:RY X R —RY,
For many problems of interest (e.g., climate) U is a highly
nonlinear function. The noise component is modeled by the
standard mean 0, covariance matrix I Wiener process,
W ERY, possibly modulated by a state-dependent matrix
S:R¥X R — RN, Equation (3) encompasses a wide class of
systems including deterministic (S=0) ones.

In many cases one is interested in knowing the low-order
statistics of Eq. (3), for example, an instantaneous mean
value or possibly multipoint covariance of X. These statistics
can be obtained by averaging over an ensemble of stochastic
systems, solving Eq. (3). They can also be obtained via the
forward Kolmogorov equation for the probability density
function P(X,¢) as follows:

aP=Lr(1)P, (4)

where P satisfies the conditions P(X,f)=0 and [P(X,)dX
=1, and where L* is the generator of the Markov process. In
the case of Eq. (3) this operator takes the form

LAOPX) == Vx - (UX, ) X)) + Vi (DX, ) ¥(X)).
(5)

The forward Kolmogorov equation then becomes a Fokker-
Planck equation,

4P +Vx - (UP) = V:(DP), (6)

where D(X,1)=S(X,#)S(X,7)” is the non-negative-definite
diffusion matrix arising from the noise term. Unlike the
original dynamical equation (3), the forward Kolmorogov
equation (FKE) is both linear and deterministic. Dealing with
it, therefore, has apparent advantages over the original en-
semble of stochastic systems simulations. The price to pay
for these advantages is that the FKE lives in a typically high,
potentially infinite-dimensional space. When Eq. (3) is a
nonlinear PDE, a numerical solution to the FKE is usually
ruled out.

For computational purposes, we would therefore like to
reduce the FKE (if possible and useful) to a small system of
ordinary differential equations. This reduction should sim-
plify the computation as much as possible while retaining
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fidelity to the original dynamical processes. The reduction
proceeds by taking moments of the FKE with respect to a
vector-valued function &X,7) from RVX R, —R™. The &
selected should include the relevant variables (quantities of
interest) in the system such as slow modes and conserved
quantities. The moments u(r) of &X,7) are defined by

m(t) = f &X,n)P(X,1dX, (7)
and give rise to
1) = f EX,0)P(X,0dX, (®)
where
EX,1) = 04(X.1) + L(NEX, 1), )

and L is the adjoint of L£* or the backward Kolmogorov
operator. The result (8) can be obtained by averaging over an
ensemble of realizations of the stochastic dynamics (3). In
general, however, Eq. (8) is not a closed equation for the
moments #. One can close this equation by choosing a PDF
P(X,t, ), which itself is a function of the moments .

() =Vt = f EX.0P(X,1,p)dX. (10)

Alternatively, one can select a family of probability densities
P(X,t, @), specified by parameters aw= a(p, 1) rather than di-
rectly by the moments u. This is analogous to specifying the
temperature in the canonical ensemble as opposed to the av-
erage energy. The equivalence of these approaches is guar-
anteed provided that the parameters and moments can be
determined uniquely from one another. The translation be-
tween the parameters and their corresponding moments can
be carried out by one of several methods. In some cases one
may require Monte Carlo evaluation of the resulting inte-
grals.

If the moments and/or parameters are selected judiciously,
one hopes that the approximate PDF P(X, 7, a(u) (1)) will be
close to the exact solution of the Liouville/Kolmogorov
equation (4). The mapping closure approach of Chen et al.
[10] and the Gaussian mapping method of Yeung et al. [11]
are based on this type of parametric PDF closure [22]. In
fact, perhaps the most familiar application of the parametric
approach is the use of the Rayleigh-Ritz method in quantum-
mechanical calculations. This is the essential approach of our

paper.

III. EQUATION-FREE COMPUTATION

Although we now have obtained a closed moment equa-
tion [Eq. (10)], we still need to determine the dynamical
vector field V. As explained above, this step can be a serious
obstacle to the practical implementation of PDF-based mo-
ment closure (PDFMC). A method to calculate V is desirable
that (i) does not require a radical revision each time the un-
derlying code or model changes, and (ii) is relatively insen-
sitive to the complexity of the PDFMC. The equation-free
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approach of Kevrekidis and collaborators [15] meets those
requirements. It permits one to work with much more sophis-
ticated, physically realistic closures.

Equation-free computation is motivated by the simple ob-
servation that numerical computations involving the closure
equations ultimately do not require closed formulas for the
closure equations. Instead, one must only be able to sample
an ensemble of system states X distributed according to the
closure ansatz P(X,t; @) and then evolve each of these via
Eq. (3) for short intervals of time. Such sampling and subse-
quent dynamical evolution would be necessary to calculate
the statistics of interest even when not using a closure strat-
egy. It is sufficient to have a (possibly black-box) subroutine
available which, given a specific state variable X(¢) as input,
returns the value of the state X(z+ &¢) after a short time &r.
The ensemble of systems, each of which satisfies Eq. (3), is
evolved over a time interval &¢. The moments or parameters
o or e are determined at the beginning and end of this in-
terval and the time derivative gt is estimated from the results
of these short ensemble runs. This “coarse time stepper’” can
be used to estimate locally the right-hand side of the closure
evolution equations, namely, V(u,1).

Coarse projective forward Euler (arguably the simplest of
equation-free algorithms), which we will use below, illus-
trates the approach succinctly: Starting from a set of coarse-
grained initial conditions specified by moments u(r) we first
(a) lift to a consistent fine scale description; that is, sample
the PDF ansatz P(X,t;a(t)) to generate ensembles of initial
conditions X for Eq. (3) consistent with the set u(z); (b)
starting with these consistent initial conditions we evolve the
fine scale description for a (relatively short) time &f; we sub-
sequently restrict back to coarse observables by evaluating
the moments u(7+ &t) as ensemble averages and (d) use the
results to estimate locally the time derivative du/dt. This is
precisely the right-hand side of the explicitly unavailable
closure, obtained not through a closed form formula, but
rather through short, judicious computational experiments
with the original fine scale dynamics or code. Given this
local estimate of the coarse-grained observable time deriva-
tives, we can now exploit the smoothness of their evolution
in time (in the form of Taylor series) and take a single long
(Ar) projective forward Euler step as follows:

u(t+6r>—u(r)] a1

m(t+ Ar) = u(r) + At|: py

The procedure then repeats itself: lifting, fine-scale evolu-
tion, restriction, estimation, and then (connecting with con-
tinuum traditional numerical analysis) a new forward Euler
step. Beyond coarse projective forward Euler, many other
coarse initial-value solvers (e.g., coarse projective Adams-
Bashforth, and even implicit coarse solvers) have been
implemented; the stability and accuracy study of such algo-
rithms is progressing [15]. These developments allow us to
construct a nonintrusive implementation of PDF moment
closures; nonintrusive in the sense that we compute with the
closures without explicitly obtaining them, but rather by in-
telligently chosen computational experiments with the origi-
nal, fine-scale problem.
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There is, however, an obvious objection to the equation-
free implementation of moment closures. Using the same
ingredients, one can clearly obtain an estimate of the tempo-
ral evolution of any statistics of interest [for example, the
moment averages ()] without the need of making any clo-
sure assumptions whatsoever. This can be done by the much
simpler method of direct ensemble averaging. That is, one
can sample an ensemble of initial conditions X from any
chosen distribution Py(X), evolve each of these realizations
according to the fine-scale dynamics of Eq. (3), and then
evaluate any statistics of interest at time ¢ by averaging over
the ensemble of solutions X(z). It would seem that this direct
ensemble approach is much more straightforward and accu-
rate than the equation-free implementation of a moment clo-
sure, which introduces additional statistical hypotheses.

The response to this important objection is that the fine-
scale dynamics (3) is often very stiff for the applications
considered, in which the system contains many degrees of
freedom interacting on a huge range of length and time
scales. In contrast, the closure equation (10) is usually much
less stiff, because of statistical averaging, and its solutions
(1) are thus often much smoother in time (and space). Thus,
to evolve an ensemble of solutions of the fine-scale dynamics
(3) from an initial time #, to a final time 7y+7 would require
O(T/ ét) integration steps, where the time step &t is required
to be very small by the intrinsic stiffness of the microdynam-
ics. In the closure approach, the evolution of the moment
equations (10) from time 7, to time f,+7 requires only
O(T/Ar) integration steps, with (hopefully) Az> . Each of
these closure integration steps by an increment Af requires in
the equation-free approach just one (or just a few) fine-scale
integration step by an increment &t. Thus, there is an overall
savings by a (hopefully) large factor O(A¢/&t). This crude
estimate is based on a single-step coarse projective forward
Euler algorithm; clearly, more sophisticated projective inte-
gration algorithms can be used.

In all of them, however, the computational savings are
predicated on the smoothness of the closure equations, and
are governed by the ratio of the time that it takes to obtain a
good local estimate of du/dt from full direct simulation to
the time that we can (linearly or even polynomially) extrapo-
late pm(f) in time. It is also worth noting that a variety of
additional computational tasks, beyond projective integration
(e.g., accelerated fixed-point computation) can be performed
within the equation-free framework.

In the next section we show by a concrete example how
significant computational economy can be achieved with sta-
tistical moment closures implemented in the equation-free
framework.

IV. NUMERICAL EXAMPLE

We illustrate here the equation-free implementation of
moment closures for a canonical equation of phase-ordering
kinetics [18], the stochastic time-dependent Ginzburg-
Landau (TDGL) equation in one spatial dimension. This is
written as

PHYSICAL REVIEW E 77, 026701 (2008)

5¢L(;:J) =DAP(x,1) = V'(d(x,1) + n(x,1),  (12)

where ¢(x,1) represents a local order parameter, e.g., a mag-
netization. The noise has mean zero and covariance
((x,0)p(x’,1"))=2kTS(x—x")S8(t—1t"). The potential V shall
be chosen as

V() = 3 #c) + (e

to represent a single quartic or quadratic well. This stochastic
dynamics has an invariant measure which is formally of
Hamiltonian form P.[ ¢]<exp(=H[ ]/ kT), where

o= [ | Lorwaore v 0

The Gibbsian measure P,[¢] is approached at long times for
any random distribution Pg[ ¢] of initial states.

One of the simplest dynamical quantities of interest is the
bulk magnetization ¢(1)=(1/V)[ ¢(x,t)dx, where V is the to-
tal volume. If the initial statistics are space homogeneous,
then the ensemble average w(f)=(¢(t)) is also given by
u(t)={¢(x,1)) for any space point x. Equation (12) leads to a
hierarchy of equations for statistical moments of ¢(x,t). For
example, the first moment satisfies the equation

W:DA<¢(XJ>>—<¢>(x,t)>—<¢3(x,t)>. (14)

The evolution of the mean total magnetization is thus a func-
tion of the mean cubic total magnetization. One could write a
time evolution equation for (¢’), but it would involve a
higher-order term {¢°), and so on. Each equation contains
higher moments and therefore the hierarchy does not close.

To close the equation for u(f) we assume a parametric
PDF of the form P[¢; a]xexp(—H[ ¢; a]/kT), where

H[¢;a]=H[p]+ aJ (x)dx

is a perturbation of the Hamiltonian (13) by a term propor-
tional to the moment variable & ¢]=(1/V)[ ¢(x)dx. This is a
special case of a general “entropy-based” closure prescrip-
tion proposed by Eyink and Levermore [17]. This closure
scheme guarantees that a(r) — 0 at long times and therefore
the PDF ansatz P[¢;a(t)] relaxes to the correct stationary
distribution P,[¢] of the stochastic process. The determina-
tion of the parameter « given the value of the moment u is
here accomplished by Legendre transform

a=argmax,[au— F(a)], (15)

where  the  “moment-generating  function”  F(a)
=In{exp[ af p(x)dx]). and (-). denotes average with respect
to the invariant measure P.[¢]. The numerical optimization
required for the Legendre transform is well suited to gradient
descent algorithms such as the conjugate gradient method,
since
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FIG. 1. (Color online) Mean (ensemble-averaged) total field as a
function of time. Line (symbols): traditional (coarse projective) in-
tegration, respectively. See the text for a description of the step-size
selection.

(dlda) ap—F(a)]=pu-u(a),

where u(a)=(§&), is the average of the moment function in
the PDF ansatz P[¢;a]. In simple cases, F(a) and u(a)
=F'(a) may be given by closed analytical expressions. If
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not, then both of these averages may be determined together
by Monte Carlo sampling techniques.

In the numerical calculations below, we discretize Eq.
(12) using a forward Euler-Maruyama stochastic integrator
and three-point stencil for the Laplacian (other discretiza-
tions are possible).

D6t

(&%)?

X[ p(x + Ox,1) = 2¢h(x,1) + Pp(x — Ox,1)]

+ V2kT(6t/ Sx)N(x,1), (16)

d(x,t+ 6) = p(x,t) — S p(x,0) + > (x,0)] +

where N(x,r) are independent, identically distributed stan-
dard normal random variables for each space-time point
(x,7). The invariant distribution of the stochastic dynamics
space discretized in this manner has a Gibbsian form
cexp(—H s/ kT) with discrete Hamiltonian

Hs= %<§> [6() - ¢(x")F + 2 &B&(x) + i¢“(x>],

(17)

where (x,x’) are nearest-neighbor pairs. The closure ansatz
can be adopted in the consistently discretized form
Py ¢;alxcexp(-Hy ¢; al/kT), where

FIG. 2. (Color) Comparison of the time-dependent PDF’s of the local field ¢(x,7) for the exact solution (blue) and for the projective
integration or closure solution (red). Due to translation invariance, these PDFs do not depend on x.
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Hi¢;al=H{ ]+ aE Sxp(x).

In this numerical experiment, we integrate an N=1000 mem-
ber ensemble of solutions of Eq. (17), and measure the
ensemble-averaged, global magnetization u(f)=(¢(r))
=(1/V)2{p(x,1)) at each time step. With this we compare
the results of the entropy-based closure simulation imple-
mented by the equation-free framework using also an en-
semble with N=1000 samples. In this concrete example, the
projective integration scheme works as follows: Suppose we
are given the parameter a(z) at time ¢. The mean wu(r) is first
calculated from the parametric ensemble at time ¢ by Monte
Carlo sampling. Next, all N samples are integrated over a
short time step ot to create a time-advanced ensemble. From
this ensemble w(z+ &) is calculated, which yields an estimate
of the local time derivative.

Fapp(t) = [l + 8) — (1) )/ ot

A large, projective Euler time step of the moment average is
then taken via

plt+ At) = pu(t) + At g, (2).

The parameter is finally updated by using the Legendre
transform inversion to obtain a(z+A¢) from the known value
u(t+Ar). The cycle may now be repeated to integrate the
closure equations by successive time steps of length At.

A critical issue in general application of projective inte-
gration is the criterion to determine the projective time step
At. For stiff problems with time-scale separation, the projec-
tive time step for stability purposes is of the order of (1/
fastest “slow group” eigenvalues), while the “preparatory”
simulation time is of the order of (I/slowest “fast group”
eigenvalue). Variants of the approach have been developed
for problems with several gaps in their spectrum [19]. Accu-
racy considerations in real-time projective step selection can,
in principle, be dealt with in the traditional way for integra-
tors with adaptive step-size selection and error control:
through online a posteriori error estimates. An additional
“twist” arises from the error inherent in the estimation of the
(unavailable) reduced time derivatives from the ensemble
simulations; issues of variance reduction and even online
hypothesis testing (are the data consistent with a local linear
model?) must be considered. These are important issues that
are currently explored by several research groups [20]. Nev-
ertheless, the main factor in computational savings comes
from the effective smoothness of the unavailable closed
equation: the separation of time scales between the low-order
statistics we follow and the higher-order statistics whose ef-
fect we model (and, eventually, the time scales of the direct
simulation of the original model).

Figure 1 is a plot comparing projective integration with
entropy closure and direct ensemble integration with Eq. (12)
for diffusion constant D=1000.0. We have selected both the
“fine-scale” integration step ot and the “coarse-scale” projec-
tive integration step Af to be as large as possible, consistent
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with stability and accuracy. Thus, only steps small enough to
avoid numerical blowups were considered. Then, values
were selected both for Jr and for Az so that the numerical
integrations with those time steps differed by at most a few
percent from fully converged integrations with very small
steps. In this manner, the time step required for the Euler-
Maruyama integration of Eq. (12) was determined to be &t
=0.0004. On the other hand, for projective integration of the
closure equation a time step A7r=0.01 could be taken. This
indicates a gain in time step by a factor of 25, which is also
roughly the speedup in the algorithm or savings in CPU time.
The present example is not as stiff as equations that appear in
more realistic applications, with a very broad range of length
and time scales, where even greater computational econo-
mies might be realized.

In general, the moment-closure results need not agree so
well with those of the direct ensemble approach, even when
both are converged. In the example presented here, there is
good agreement because the closure effectively captures the
one-point PDF (see Fig. 2). This one-point PDF is the only
statistical quantity that enters into Eq. (14) as long as the
magnetization statistics are homogeneous and the Laplacian
term vanishes.

V. CONCLUSIONS

In this paper, we have described how one can combine
recently developed equation-free methods with statistical
moment closures in an attempt to model nonlinear problems.
With this method we can numerically approximate the evo-
lution of certain statistics of complex nonlinear systems, for
which closure equations may not be available in closed form.
In the example presented here the specific entropy-based clo-
sure we selected has an H theorem which guarantees relax-
ation to the equilibrium state of the original dissipative dy-
namics. However, we stress that the general approach
outlined above can be used with a variety of closure meth-
ods.

The equation-free method has the potential to enhance the
flexibility, power, and applications set of the statistical
moment-closure approach. Since little or no analytic work is
required, the sophistication of statistical moment closures
can be greatly enhanced beyond Gaussian PDF ansdtze. The
“practical usefulness” criterion for parametric PDF models
that they permit analytical calculations is replaced by the
criterion that they can be efficiently sampled. We believe that
this approach can significantly increase the usefulness of clo-
sure methods.

In order to model systems such as global climate, oceans,
and reaction diffusion processes in systems biology, one will
have to construct more complex closures. These will likely
include higher-order moments, correlation functions of the
relevant variables, highly non-Gaussian statistics, etc. As the
closures become more complex, the lifting step will require
more efficient sampling approaches. One will likely have to
use nonlocal, accelerated sampling methods. One will also
likely employ the latest in adaptive time and adaptive mesh
methods to optimize performance for large-scale problems.
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